示波器测电流波形(示波器检查电磁流量计)
一、示波示波电磁流量计产生什么样的器测器检信号
电磁流量计是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是电流应用电磁感应原理,根据导电流体通过外加磁场时感生的波形电动势来测量导电流体流量的一种仪器。
结构
电磁流量计的查电磁流结构主要由磁路系统、测量导管、量计电极、示波示波外壳、器测器检衬里和转换器等部分组成。电流
磁路系统:其作用是波形产生均匀的直流或交流磁场。直流磁路用永久磁铁来实现,查电磁流其优点是量计结构比较简单,受交流磁场的示波示波干扰较小,但它易使通过测量导管内的器测器检电解质液体极化,使正电极被负离子包围,电流负电极被正离子包围,即电极的极化现象,并导致两电极之间内阻增大,因而严重影响仪表正常工作。当管道直径较大时,永久磁铁相应也很大,笨重且不经济,所以电磁流量计一般采用交变磁场,且是50HZ工频电源激励产生的。
测量导管:其作用是让被测导电性液体通过。为了使磁力线通过测量导管时磁通量被分流或短路,测量导管必须采用不导磁、低导电率、低导热率和具有一定机械强度的材料制成,可选用不导磁的不锈钢、玻璃钢、高强度塑料、铝等。
电极:其作用是引出和被测量成正比的感应电势信号。电极一般用非导磁的不锈钢制成,且被要求与衬里齐平,以便流体通过时不受阻碍。它的安装位置宜在管道的垂直方向,以防止沉淀物堆积在其上面而影响测量精度。
外壳:应用铁磁材料制成,是分配制度励磁线圈的外罩,并隔离外磁场的干扰。
衬里:在测量导管的内侧及法兰密封面上,有一层完整的电绝缘衬里。它直接接触被测液体,其作用是增加测量导管的耐腐蚀性,防止感应电势被金属测量导管管壁短路。衬里材料多为耐腐蚀、耐高温、耐磨的聚四氟乙烯塑料、陶瓷等。
转换器:由液体流动产生的感应电势信号十分微弱,受各种干扰因素的影响很大,转换器的作用就是将感应电势信号放大并转换成统一的标准信号并抑制主要的干扰信号。其任务是把电极检测到的感应电势信号Ex经放大转换成统一的标准直流信号。
二、怎样用示波器检测汽车故障
一、维修诊断技术的发展
汽车维修设备的发展与汽车整车技术的发展是同步发展的,汽车用电控系统的装备的应用已越来越广泛,从发动机、自动变速器、安全气囊,到牵引力控制、车速稳定电子装置,更多的汽车上采用计算机微处理芯片,多个处理器之间相互连接、协调工作并共享信息构成了汽车网络。在这种情况下,对汽车维修技术的发展特别是如何快速准确地确定故障部位,找出故障原因是汽车维修诊断技术发展的方向.
汽车微机控制系统检测诊断设备就是在这种强大的市场需求下得到了蓬勃的发展.汽车微机控制系统检测诊断设备的发展经历了由简单的解码器,扫描器到汽车示波器等几个阶段。简单的解码器是利用配套连线和车上的电子控制单元(ECU)进行数据交流的专用仪器,只能读取与清除ECU存储器内的故障信息(故障代码及内容);扫描器增加了对汽车微机控制系统数据扫描的功能,并能显示出微机控制系统传感器等元件的实际运行参数(数据流),以便检修人员快速分析、诊断出故障部位;但是对扫瞄工具来讲,对错误信号的判断是有局限性的,对超范围的信号往往会错误的认为是正确的,或者是由于“假信号”发生的太快,扫瞄工具不能同步捕捉信号而不能显示出来。这也就是人们常常纳闷:为什么汽车明明有故障,而扫描工具不能显示故障码的原因所在。汽车示波器就是为进一步满足市场的需要,快速、准确的判断故障的部位与原因而出现的。汽车示波器是以微机为核心的汽车性能综合分析设备,它除了具有解码器和扫描器的功能外,还能通过测试接口和测试程序软件实现对汽车微机控制系统在线测试数据的自动分析,并以波形图的形式显示出来。示波器显示的波形是对所测信号的实时显示。因为取样的频率高,所以信号的每一重要细节都被显示出来,这样高的速度可在发动机运转时识别出任何可造成故障的信号。而且如果需要,任何时间都可重看波形,因为这些波形都可保存在示波器中,并在需要的时候来回放所保存的波形。示波器具有双线或多线功能,即同时可在屏幕上看到两个或多个单独的信号。这样就可观察一个信号如何影响另一个信号。例如可将氧传感器电压信号输入到通道1,将喷油器脉冲输入到通道2,然后观察脉冲是否响应氧传感器信号的变化。也可将数字示波器看成一个高速可视电压表,能够看到清晰的信号波形,在图形上能捕捉到瞬间干扰。尖峰脉冲、噪声和所测部件的不正常波形。
二、金奔腾汽车专用示波诊断仪介绍
我公司生产的汽车专用示波诊断仪型号为Diag Tech-I,具有四通道示波,采样频率为500KHz,装备有16位、33 KHz CPU,液晶显示器,带有RS232串行接口,集扫描仪、示波器、万用表与点火波形检测于一体,给广大用户在汽车维修诊断过程中如何快速、准确的确定故障的部位与原因提供了强有力的帮助。
示波技术在汽车维修诊断上的应用不仅可以对传统点火系统的初级、次级波形进行检测,还可以对电控单元的各种传感器的波形进行检测,从而依据波形的显示判断传感器的工作状态,确定故障的原因与部位。示波技术大大提高了汽车维修诊断的速度与准确性,从而使示波技术在汽车维修诊断上得到极大的应用。
对直接点火系统来讲,该形式的点火系统无高压电缆,火花塞被摇臂罩盖起来,上面还配置进气岐管的空气导管、曲轴箱排气管等各种零件,所以诊断发动机的点火系统相当困难。对于这种点火方式,因为没有高压电缆,无法采样二次信号电压波形,但是每缸都有点火器(点火功率三极管),因此采样点火一次信号电压波形进行点火系诊断是最好的方法,也是示波器的最得意之处。
三、维修实例
1、有一桑塔纳时代超人GSI轿车,发动机型号AJR。故障现象是发动机怠速不稳,突然加大油门时,进气回火、排气放炮且高速行驶性能不好。用解码器读出故障码是发动机霍尔传感器出现短路/断路,换件后还是一样。拔下霍尔传感器后,发动机仍可运转,更换火花塞和高压线及电子燃油泵,故障依然没有排除。再用解码器读故障码,仪器无故障码显示。用户在万般无奈的情况下,来我公司寻求技术支持。
在听完用户的基本介绍以后,用我公司生产的汽车专用示波诊断仪对汽车传感器进行检测.在检测空气流量计传感器的波形时,屏幕上显示出明显的故障波形,见插图1,由此判断空气流量计有故障.更换空气流量计后,故障消失。用示波器对传感器的波形检测往往会受到事倍功半的效果,用户对此非常满意。为什么空气流量计损换以后,发动机控制单元不能监测到呢?上海桑塔纳时代超人GSI轿车空气流量计(MAP)采用的是热膜式空气流量计,为第四代产品,其工作原理是:ECU通过给热膜不同的电流来保持热膜恒温。当不同流量的空气流经热膜时带走不同的热量,这时的电流变化就成为进气量的度量。在热膜式空气流量计中,被电流加热的热电阻放在进气通道中,加热电阻保持一个不变的温度,由于进气气流的冷却作用,使热电阻在一定的情况下有下降的趋势。为了保持温度恒定,流过加热电阻的电流,随着进气流量、空气温度和密度的变化,因此,电流大小的变化,可以测出进气量的多少。
当空气流量计出现故障,特别是故障不太明显时,发动机电控单元往往监测不到空气流量计信号出故障,当然自诊断系统也就不可能储存或释放故障信息。相反,发动机控制单元会错误地改变喷油量和点火提前角,使发动机产生怠速不稳或加油时进气回火及排气放炮.在此情况下,只有应用示波器对相关传感元件进行波形检测,才能手到病除。
2.一辆捷达GT型轿车,装备4缸20气门AHP电喷发动机.怠速不稳,加速时有冒黑烟现象,行驶过程中急加速顿车.
这种故障现象特征较为明显,首先拆检火花塞发现电极间隙过大,并且有积碳,可以判定混合气过浓.将火花塞更换后试火,点火能量很高,此时发动机的怠速状况有所改善,但加速时的故障现象仍然明显.
连接故障诊断仪进行检测,显示节流阀体存在故障.将故障码清除后,重新启动发动机,但该故障码再次出现.对节流阀体用清洗剂进行清洗后,对发动机电控单元进行基本设置.再次启动发动机,加速状况明显改善,怠速还是不稳.进行路试时,急加速顿车现象依然明显.再用故障诊断仪进行检测,无故障码显示.
接下来对燃油系统进行检测,怠速时燃油系统压力为0.25Mpa,拔下油压调节器真空管,加速时油压上升状况均正常。拆下喷油嘴发现其前端积碳较多,不过在实验台上进行超声波清洗、检查喷油嘴密封性、喷油量及雾化状况也未见异常。因此基本可以排除燃油系统出故障的可能性。
在排除了点火及燃油系统后,如何进一步判断故障存在的部位及原因便是用户最为关心的问题.用我公司生产的汽车专用示波诊断仪对传感元件进行检测,当检测到空气流量计时,出现非常明显的故障波形,见插图2。更换空气流量计后,故障消失,解决了困绕用户的难题。 3.一辆97款丰田佳美SXV20L轿车,用户反映车辆低速行驶时发动机转速有时会突然升高,发动机行驶乏力,易熄火且熄火后重新起动困难,但发动机故障灯未亮.
该车的故障特征应与进气管路系统有关。首先检查各真空管有无泄漏,怠速控制阀是否存在卡滞现象。经仔细检查后确认:各真空管路情况良好,怠速控制阀除有些积碳外,阀门转动灵活。对怠速控制阀积碳进行清洗后,故障现象没有消失。接上故障诊断仪对车辆进行检测,显示结果却无故障码存在.
客户就是在这种情况下来我公司进行求援的。基于以上的介绍,初步确认是有一传感器有故障。利用我公司生产的汽车专用示波诊断仪对车辆的传感器进行波形检测。当检测到水温传感器的波形时,出现明显的故障波形。见插图3。更换水温传感器后,故障消失。四、结束语
示波技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确度,特别是在利用扫描工具进行故障码的读取时,仪器显示无故障码,但汽车故障特征又非常明显的情况。示波技术适应汽车技术装备的发展的需要应用于汽车维修业,在实际的工作应用中因其在确定故障的部位与原因的准确与快速而得到推广与发展,示波技术已成为汽车维修业需要尽快普及与掌握的工具。
三、电磁流量计出现故障原因
电磁流量计根据电磁感应原理工作,因此安装时应远离变频器、变压器、电动机等易产生电磁干扰的设备,安装位置应避免阳光直射。被测流体电导率应基本均匀。同时还应注意以下几方面:上下游直管段,为了使现场使用的流量仪表获得与实流校验相同的精度,一定要满足规定的流动条件。电磁流量计工作时要求上游流体均匀流动,下游配管件的扰动不会上溯影响测量值,即要求一定长度上下游直管段。一般要求在电磁流量计上游的各种阀门、弯管、缩径管等距流量计的直管段的长度必须在5~10D以上(D是流量计的内径),下游直管段长度应在2~3D以上。液体应充满管道,智能电磁流量计可以水平、垂直或与水平成任何角度安装,但是管路结构必须确保测量管中始终充满液体,否则就会产生误差。当不得不装在自上而下的垂直管道上时,流量计应装在管道的下部,且流量计下游装有节流阀门使下游产生一背压。液体中无气泡,管路设计应确保液体中不会分离出气泡。因为阀门动作时,会使管道中的压力变化,从而产生气泡,所以,流量计应安装在阀的上游。电极与地面平行,电磁流量计水平安装或与地面成一角度时,电极连线与地面平行。如果电极连线与地面垂直的话,上一个电极附近容易集结气泡阻挡液体与之接触,而下面的电极容易被泥浆覆盖。图1ADMAG AE测量原理示意图..图2电磁流量计组成框图。液体电导率应稳定,不要把电磁流量计安装在流体电导率极不均匀的地方。尤其在仪表上游有化学物质注入的情况下,极易导致电导率的不均匀性,从而对仪表指示产生严重影响。在这种情况下应在仪表下游注入化学物质,如需在上游注入则注入点应与流量计保持一定距离,使液体混合均匀。接地,由于智能电磁流量计的感应信号电压很小,容易受噪声的影响,因此流量计必须良好接地。电磁流量计都配有接地环,其作用是通过与液体接触,建立液体接地,并且保护内衬,只有这样才能确保传感器的基准电位、转换器/放大器的基准电位都与被测液体电位相同,也与地电位相同,减少噪声对测量结果的影响。必须强调,电磁流量计一定要单独接地。因为若与其他仪表或电气装置共同接地,接地线中的漏电流对测量信号将产生串模干扰,严重时流量计将无法工作。另外,接地点应远离大型用电器,避免地电流串入流量计,造成干扰源。此外,在安装过程中还应注意:焊接时千万不可碰伤流量计里面的电极和橡胶衬里(电极一般为两粒白色金属点),安装流量计时,法兰之间应加橡胶垫圈,以防漏水。阴雨天应避免室外接线。维护,1、日常维护。电磁流量计在使用过程中应定期做直观检查,检查仪表周围环境,扫除尘垢,确保不进水和其他物质,检查接线是否良好,检查仪表附近有否新装强电磁场设备或有新装电线横跨仪表。若是测量介质容易沾污电极或在测量管壁内沉淀、结垢、应定期作清垢、清洗。2、故障查找,电磁流量计开始投运或正常投运一段时间后发现仪表工作不正常,应首先检查流量计外部情况,如电源是否良好、管道是否泄露或处于非满管状态、管道内是否有气泡、信号电缆是否损坏、转换器输出信号(即后位仪表输入回路)是否开路。切记盲目拆修流量计。3、传感器检查,测试设备:500MΩ绝缘电阻测试仪一台,万用表一只。测试步骤:(1)在管道充满介质的情况下,用万用表测量接线端子A、B与C之间的电阻值,A-C、B-C之间的阻值应大至相等。若差异在1倍以上,可能是电极出现渗漏、测量管外壁或接线盒内有冷凝水吸附。(2)用万用表测量X、Y之间的电阻,若超过200Ω,则励磁线圈及其引出线可能开路或接触不良。拆下端子板检查。(3)检查X、Y与C之间的绝缘电阻,应在200MΩ以上,若有所下降,用热风对外壳内部进行烘干处理。实际运行时,线圈绝缘性下降将导致测量误差增大、仪表输出信号不稳定。(4)在衬里干燥情况下,用MΩ表测A-C、B-C之间的绝缘电阻(应大于200MΩ)。再用万用表测量端子A、B与测量管内二只电极的电阻(应呈短路连通状态)。若绝缘电阻很小,说明电极渗漏,应将整套流量计返厂维修。若绝缘有所下降但仍有50MΩ以上且步骤(1)的检查结果正常,则可能是测量管外壁受潮,可用热风机对外壳内部进行烘干。(5)如判定传感器有故障,请与电磁流量计生产厂家联系,一般现场无法解决,需到厂家维修。4、转换器检查,电磁流量计如判定是转换器故障,经检查外部原因没问题的情况下,请与生产厂家联系一般会采取更换线路板的方式解决。常见故障及处理液体中含有气泡,现象:液体中含有气泡现象导致测量不准或测量值波动(输出波动)。成因:液体中泡状气体的形成有从外界吸入和液体中溶解气体(空气)转变成游离状气泡两种途径。若液体中含有较大气泡,则因擦过电极时能遮盖整个电极,使流量信号输入回路瞬间开路,导致输出信号出现晃动。..判别方法:简单判别方法是当遇到晃动时,切断磁场励磁回路电流,如果此时仪表依然有显示且不稳定时,说明大多是由于气泡影响造成。如果此时以指针式万用表测量电极电阻,可测量到电极的回路电阻要比正常时高,但该测试需要靠专业人员长期积累的测试经验和数据。解决方法:对于被测介质中含有空气的情况,如果判断是由安装位置引起的,如因电磁流量计装在管系高点而滞留气体或外界吸入空气造成流量计晃动的话,更换安装位置是较有效的解决方法,在管线很低点或采用U型管安装。但很多应用情况是口径较大或者安装的位置不易改换,建议在流量计上游安装集气包和排气阀。电极腐蚀,现象:在排除气泡的因素后有因电极腐蚀而造成测量值晃动的情况,且都以传感器失效而告终。成因:由于电极材料的选择不当造成电极为被测液体所腐蚀,从而导致流量计输出晃动。判别方法:由于电极材料不耐腐蚀所造成的故障只有在电极被腐蚀后才会表现出来,之前通常无法判别。解决方法:只有更换新的电极。传统的电极腐蚀故障诊断处理都属于事后维护处理的方法。电极结垢,现象:应用于原水和污水等计量环境,电极结垢的发生几率较高。当电极结垢时,表现为信号逐渐减小,直至绝缘而使得信号回路开路,此时流量信号被隔绝。成因:当被测介质的粘度较高时,易在管壁附着和沉淀,若附着的介质是非导电物质,就形成我们日常所说的电极结垢,使电极开路而不能工作。解决方法:建议选用不易附着的尖形或半球形突出电极、可更换式电极、刮刀式清垢电极等。外部强电磁场干扰,现象:信号失真,输出信号表现非线性或信号晃动。成因:由于流量信号小易受外界干扰影响,而干扰源主要有管道杂散电流、静电、电磁波和磁场等。电磁流量计的设计制造应符合电磁兼容性要求,在规定辐射电磁场环境下能正常工作。但现场应用表明,强磁场干扰会导致磁场回路饱和及外部磁场进入电磁流量计的磁场回路并形成杂散磁场而影响输出的线性度。电场干扰则是由于噪声破坏测量管内电势平衡造成输出信号波动异常。判别方法:当输出信号表现为非线性时,可通过专门使用的模拟信号仪来判断,如电磁流量计转换器的输出为线性,可判别为外界的磁场干扰影响,反之也有可能是电磁流量计本身的电器故障。对电场干扰,可在先不加激磁电流时用示波器测量两极间的电势,其值应为零,如测得有交流电势,则可判别为漏电流等电场干扰。解决方法:防止磁场干扰,通常只有将电磁流量传感器的安装位置远离强磁场源。强电场干扰的防止,可采取增强屏蔽等措施。如仍无效,则可将电磁流量传感器与连接管道绝缘。
想了解更多相关信息,可以咨询麦克传感器股份有限公司,谢谢!
参考资料:土压传感器价格